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Abstract— We study the problem of trust inference in signed 

social networks, in which, in addition to rating items, users can 

also indicate their disposition towards each other through 

directional signed links. We explore the problem in a semi-

supervised setting, where given a small fraction of signed edges 

we classify the remaining edges by leveraging contextual 

information (i.e. the users’ ratings). In order to model user 

behavior, we use deep learning algorithms i.e. a variation of 

Restricted Boltzmann machine and Autoencoders for user 

encoding and edge classification respectively. We evaluate our 

approach on a large-scale real-world dataset and show that it 

outperforms state-of-the art methods. 

Keywords— signed social networks; edge classification; trust; 

restricted boltzmann machines; autoencoders 

I.  INTRODUCTION  

Social networks have transformed multiple aspects of 
human behavior and interactions, with their effect on 
individuals going beyond their online habits. A large spectrum 
of people’s behavior, ranging from leisure pursuits and lifestyle 
choices to political stance, is largely affected by that of their 
peers. The internet industry could not remain intact, as 
customers increasingly base their decisions regarding future 
purchases on reviews and comments expressed online by their 
social connections. Online retailers, for whom the ability to 
predict a user’s interests and make accurate recommendations 
for future purchases is extremely valuable, have quickly 
realized the role of peer influence in consumer habits and  are 
looking for ways to incorporate social information in their 
predictive models. Such mechanisms help recommender 
systems directly address challenges such as the cold-start 
problem, i.e. how to build an accurate model of a user’s profile 
before they have provided sufficient indications of their 
preferences through their purchase or ratings history. The role 
of trust and distrust emerges naturally. In most social networks, 
connections imply an acquaintance relationship which can 
range from awareness of each other’s existence to close 
friendship, but show little indication of the levels of trust and 
distrust between the users. There are, however, web sites, 
which allow their users to explicitly annotate their disposition 
towards others as either positive or negative, indicating 
friendship or enmity respectively. For example in Slashdot, a 
technology news web site, users are able to indicate their 
preferences, by tagging each other as friend or foe.  

In social networks with no explicitly signed links, inferring 
trust/distrust is a challenging task, mostly due to the non-
transitive nature of distrust, and has been the focus of several 
previous works. A first attempt to study the connectivity 
patterns of friendship/enmity networks dates back to the 1940’s 
with the introduction of the structural balance theory by Heider 
[1], which was later expressed in graph-theoretic language by 

Cartwright and Harary [2]. The balance theory is applied on 
simple, undirected networks and studies the distribution of 
positive and negative edges on triads of users. Even though it 
was formed under very different conditions, the structural 
balance theory approximates well the behavior of current real-
world signed social networks. An alternate theory of status that 
was first introduced by Guha et al. in [3] and later established 
by Leskovec et al. in [4], has recently emerged. According to 
this new theory, labeled links are not just signs of friendship or 
enmity but rather impose a hierarchy that can be explained by 
users' statuses.  A positive (/negative) edge from user u to user 
v means that u regards v as having higher (/lower) status than 
her. Therefore, the edge sign prediction problem reduces to the 
estimation of proper status settings for the social network users. 
In this work, we consider the problem of sign prediction in a 
semi-supervised setting. By exploiting the users’ preferences 
for certain items, we attempt to reconstruct the signed social 
graph that depicts the trust/distrust relationships among the 
users using minimal supervised data. By modeling user 
behavior accurately, we are able to capture correlations that are 
useful to the edge sign prediction task. We use deep learning 
algorithms (i.e. Restricted Boltzmann machine and 
Autoencoders) for user modeling and evaluate our approach on 
a large-scale real-world dataset. The evaluation results show 
that our method outperforms state-of-the art methods and could 
be of value to several application domains including 
recommender systems.   The rest of the paper is organized as 
follows. In Section 2 we discuss related work and Section 3 
states the problem definition. In Section 4, we present our 
approach and in Section 5, we evaluate our method through a 
thorough experimental study on a large-scale dataset from 
Epinions. 

II. RELATED WORK 

In this section, we report the state of the art research in trust 
analysis. First, Guha et al. in [3]  develop a framework of trust  
propagation schemes, based on the exponentiation of the 
adjacency matrix. In [5] Kunegis et al. study the friend/foe 
network of the Slashdot Zoo, introducing the signed variants of 
global, node-level and link-level network characteristics. In [6] 
the authors view edge sign prediction as a matrix factorization 
problem while in [7] the authors examine the relative strength 
between positive and negative edges. In [8] the authors propose 
a solution to the edge sign prediction problem which involves 
the discovery of frequent graph patterns that arise in social 
graphs. Leskovec et al. in [9] propose a logistic regression 
model that maps each edge to a high-dimensional feature space 
that comprises the number and type of triads that are defined by 
the endpoints of the edge and their common neighbors. Finally, 
in [10] the authors present a mixed effects framework that  
simultaneously captures users' behavior, social interactions and 
the interplay between the two. Their framework associates 
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latent factors to both users and items and accommodates the 
principles of balance and status from social psychology. The 
authors show that it is possible to infer signed social ties based 
mainly on users’ ratings, turning an acquaintance network into 
a signed trust-distrust graph. We consider the results of the 
works of Leskovec et al. [9] and Yang et al. [10] as our 
baseline methods. 

III. PROBLEM DEFINITION 

In this work, we deal with the problem of trust inference in 
online social networks. Our goal is to predict the level of trust 
between two users based on their ratings on a set of items.  Our 
dataset consists of the following: a signed social graph 
        ,  where V is the set of vertices corresponding to the 
users , E is the set of (directed) edges and L is a set of labels 
that can be assigned to the edges, a set of items M,  and a set of 
ratings               , which are assigned by user 
      to an item      . Two users correspond to adjacent 
nodes in the social graph, if they have engaged in some 
interaction, i.e. expressed an opinion on each other, with the 
label     of the edge indicating the type of interaction. The 
semantics are straightforward: A positive link from a node u to 
another node v is viewed as an expression of trust or friendship. 
Likewise, a negative edge is interpreted as a sign of distrust or 
antagonism. The main focus of this paper is to propose a 
solution to the edge sign prediction problem in a semi-
supervised setting. More specifically: 

Problem definition: Given a partially labeled social graph 

       in which only a small fraction ε% of the links has a 

sign label, our goal is to "en-sign" the rest of the graph, i.e. to 

approximate the function              , which depicts 

the disposition (trust/distrust) between users, using the rating 

distribution expressed by  . 

 

The rationale behind our approach is similar to the concept of 

transfer learning [11] [12] where the knowledge that we 

acquire in one domain is used to solve a task in another 

domain. Throughout this work, we assume that the network  

structure, i.e. the set of edges E, is known to us but we only 

possess label information for a small fraction of the links.  

IV. APPROACH 

In this section, we present our method for the edge sign 

prediction problem. Our approach is influenced by the recent 

advances in the field of deep learning, a popular domain in 

machine learning research that utilizes neural networks of 

many layers to achieve better representations of the input data. 

In our approach we use two of the building blocks of deep 

learning architectures, namely the Restricted Boltzmann 

Machine and the Autoencoder. Our method is decomposed in 

two stages: First, we exploit the rating information expressed 

by the users in order to assign to each one of them a binary 

code indicative of their preferences, by employing a collection 

of  Restricted Boltzmann Machines (RBMs). Building on top 

of these user codes, we then perform the actual classification 

task using autoencoder networks. Fig. 1 shows a visual 

summary of our method, and the next subsections elaborate on 

these concepts.  

A. 1st step - User encoding  phase  

In this step, our goal is to assign a binary low-dimensional 

code to each user by exploiting her ratings on certain items. To 

achieve that, we resort to a Restricted Boltzmann Machine 

(RBM) network, an energy-based, undirected graphical model. 

In its simplest form, a RBM consists of binary units which are 

organized in a set of layers, called the “visible" and the 

"hidden" layer. Observed data are fed to the visible layer, while 

the units in the hidden layer capture statistical regularities. In 

this manner, a RBM approximates the input data distribution 

and can be considered a generative model. In our setup, the 

data fed to the visible layer corresponds to the rated items and 

our aim is to orchestrate the training procedure properly in 

order to identify useful correlations that will be able to explain 

the rating behavior of the users.  In order to permit the RBM to 

consume rating data , we chose to replace the binary visible 

layer with a layer of conditional multinomial units [13], 

achieving a one to one correspondence between the units in the 

visible layer and the set of available items: each visible unit 

will be set to the appropriate “one hot” vector representing the 

rating of the user for the specific item e.g. [0 0 1 0 0] for rating 

   .  Furthermore, given that rating data are usually sparse 

(we expect a single user to rate just a small fraction of the 

available items), we adopted two of the extensions proposed by 

Salakhutdinov et al. in [14]. First, we assign a different RBM 

to each user under the constraint that all RBMs share the same 

number of hidden units and we require that each RBM has 

active visible units only for the items rated by that user. 

Second, each RBM has a single training case but all the 

corresponding connection weights and biases are tied i.e if two 

users have rated the same item, their two RBMs must use the 

same weights between the visible unit for that item and the 

hidden units. The expressions for the conditional probabilities 

for the hidden and visible units of an RBM assigned to a 

random user are:   
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,where   is the number of items rated by the user,   
   , if 

the user rated item   with   and 0 otherwise,    
  is the 

symmetric connection weight between hidden feature j and 

rating k of item  ,    
  is the bias of rating item   with rating  , 

  is the bias of hidden feature  and   is the number of units in 

the hidden layer. The network parameters are learnt by 

optimizing the Contrastive Divergence (CD) [15], which 

involves running a Gibbs sampler for a number of steps 

alternately using the Equations 1, 2, initialized at the training 

data. Our encoder network operates as follows: First, we train 

the RBMs of the users for 30 epochs, using 100 units in the 

hidden feature layer. After the learning phase has completed, 

we perform an additional pass over the training data and for 

each case we compute the conditional probability           

from Equation 1. Based on these probabilities, each RBM will 

decide whether to 'turn on' (    ) or 'turn off' (    )



 
Figure 1 Our approach is decomposed into two steps. a)User encoding phase: We train the RBM encoder using the ratings of the users. A separate RBM 

is given to each user. After the training is complete, we compute the activations of the hidden units, b) Classification phase : We get the code for each link 

in the graph, by stacking the user codes of its endpoints. The output is then fed to the autoencoder network to for prediction

         the units in its hidden layer. As there is a different 

RBM for each user, each RBM can set the states of its hidden 

features independently of the others. Finally, the binary code 

that each user receives, reflects the states of the hidden units 

e.g. for states {“off”, “off”, “on”,..} the respective user code 

will be [0 0 1 ...].  Apparently, the length of the binary code 

coincides with the number of the hidden units  , which in our 

case is equal to 100. This step acts as a non-linear dimensional 

reduction mechanism that allows us to transit from the high-

dimensional space of ratings to a much lower dimensional set 

of binary vectors.   

B. 2nd step - Classification with Autoencoder networks 

This step performs the actual classification task by 

employing autoencoder networks which operate on the binary 

codes assigned to each user from the previous step. An 

autoencoder neural network is an unsupervised learning 

algorithm which tries to approximate the identity function by 

applying non-linear transformations to the input. The 

architecture of the autoencoder determines the effect that it 

will exert on the data. For example, autoencoders with fewer 

hidden units than visible can be regarded as a non-linear 

dimensionality reduction technique [16].  Other variations 

entail the sparse autoencoder, where a sparsity control is 

imposed to the neurons of the hidden layer that constrains 

them to be “inactive” most of the time and the stacked 

autoencoder, which consists of an ensemble of multiple layers 

of autoencoders, in which the outputs of a layer are fed to 

inputs of the next layer.   

Autoencoders can be particularly useful in the field of 

semi-supervised learning, where there is an abundance of 

unlabeled examples and a significantly smaller number of 

supervised data points. In such cases, an autoencoder is 

employed to perform unsupervised learning on all the 

available data. Then, its parameters are used to initialize a 

supervised neural network that will perform the actual 

classification task benefiting only from the labeled examples. 

The underlying hypothesis is that for a supervised problem 

with domain   and co-domain  , learning the distribution of 

     can be useful in approximating the distribution of  

        . For the development of our method, we utilized 

sparse autoencoders with a sparsity target of 0.05, and we 

experimented with different architectures of stacked 

autoencoders.  

We start by computing a binary code for each link in the 

network, by stacking the codes of its endpoints side by side. 

Since we deal with a directed network, it is vital to take into 

account the direction of the edge e.g. for the edge     the 

respective link code shall be: 
                                      (3) 

  

Given that each user is encoded with 100 bits (the size of the 

hidden layer of the RBM encoder) each edge code will be 200 

bits long. Next, we feed all the edge codes as input to the 

autoencoder network and we train it in unsupervised mode. In 

this way, the autoencoder learns the distribution of edge codes, 

which we consider crucial for the success of the classification 

task. Then, after the unsupervised training is complete, we use 

the parameters to initialize a supervised neural network which 

will identify regions of positive and negative sentiment in the 

parameter space by exploiting only the labeled examples. The 

supervised neural network will have an additional layer that 

will serve as output, encoding the label of the links. We use 

‘one-hot encoding’ for the output i.e. a negative link is 

encoded as [1 0] and a positive link as [0 1] and standard 

back-propagation with gradient descent is employed in order 

to perform the final fine-tuning of the parameters. Finally, we 

evaluate our method on the remaining edges.  

V. EVALUATION 

This section presents the results from the evaluation of our 

algorithm on the social graph of Epinions. We experimented 

with several autoencoder architectures and we report their 

predictive accuracy in Table 1. We also report the results of 



two baseline methods, namely the work of Yang et al. in [10] 

and the method of Leskovec et al. in [9] 

A. Dataset Description 

We have conducted our experiments on a large-scale 

dataset of 130K users from the product review website of 

Epinions, collected by Massa et al. [17]. Epinions is an 

interesting test case because, apart from rating products, it 

allows its members to directly interact with each other: Users 

can write reviews for products which are then rated by other 

individuals and they can explicitly annotate each other as 

trusted or distrusted. The dataset in our disposal captures these 

two interactions: There is a signed social graph formed by 

840K trust/distrust statements and a set of 1.5M reviews with 

13.6M ratings.  

B. Tools and Evaluation measures 

The code for the RBM encoder was implemented in the 

Java programming language and for the analysis with 

Autoencoders we used the MATLAB deep learning library 

DeepLearnToolbox
1
.  The major problem that we faced during 

the evaluation process was the high skewness of the data, since 

about 80% of the edges in the signed social graph were 

positive, allowing any positively biased classifier to achieve 

remarkable accuracy. To deal with this problem we evaluated 

our algorithm on a metric that is insensitive to the unequal class 

distribution, namely the AUC (Area Under Curve) of the ROC 

(Receiver Operator Characteristic) curve. The experiments 

were replicated 10 times in order to minimize the effect of 

randomness. 

C. Model Precision and Analysis 

Table 1 presents the AUC measurements for different 

configuration settings of the parameters (autoencoder 

architectures and fraction of known signed links). To avoid 

redundancy, the ‘network architecture’ column refers only to 

the ‘encoder’ part of the autoencoder, since the ‘decoder’ is 

simply its symmetric image e.g. for the ‘200-750’ architecture 

of Table 1, there is a ‘750-200’ decoder network that 

reconstructs the input. Each architecture identifier is in the 

form               , where  ,   refer to the dimensions 

of the input and output layers respectively, and the   ’s 

specify the sizes of the hidden layers. In our case, all the 

architectures start with a 200-unit input layer in which the 

edge codes are fed. We have experimented with eight different 

architectures with 2 to 4 layers and for variable layer sizes. 

For the first six of them, we set a large first hidden layer (≥500 

units) while for the last two we used a ‘bottleneck’ of 50 units. 

We trained the architectures with mini-batch gradient descent 

for 50 epochs and a batch size of 250. The last rows of Table 1 

report the measurements of two baseline methods. Some 

conclusions can be easily drawn: 

First, the predictive performance is quite satisfying which 

supports our choice to model user ratings with deep learning 

architectures. This procedure provided us with efficient user 

encoding schemes that were useful for the edge sign prediction 
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task that we examine here. More specifically, the first six 

architectures demonstrate about 6-10% absolute increase in 

accuracy for smaller fractions of known links (1% to 30%), 

and about 2-4% improvement for larger ratios, compared to 

the baseline [12]. In the cases of the last two (smaller) 

architectures, our approach works better when the fraction of 

known signed links is lower than 50% and performs slightly 

worse for larger percentages. The results indicate that the 

network complexity introduced by a large hidden layer 

becomes critical as more labeled data become available. Our 

method also outperforms the method of Leskovec et al. in [9], 

in which authors utilize local topology features to train a 

logistic regression classifier. This method employs a Leave 

One Out Cross-validation setting, i.e. it predicts the sign of a 

single edge considering that the edge labels of the rest of the 

social graph are known, the fraction of known edges thus 

being close to 100%.  In this setting, the authors achieve AUC 

performance of 0.9342. Our method achieves comparable 

predictive performance using far less supervised data: We 

obtain about 0.91 in AUC precision by exploiting only 30% of 

the available data and we outperform the results in [9] by 

reaching a success rate of 0.9353 using 90% of the available 

data and a [200-2000] autoencoder.  Second, we deduce that 

low rank modeling of a signed social graph is indeed possible, 

since each user can be represented efficiently with a low-

dimensional vector. Our approach provides a way to transit 

from the high-dimensional space of review ratings to a set of 

much shorter binary codes that are able to capture higher-order 

correlations in the rating behavior of the Epinions users. To 

that extent, our results are in line with the work in [18], where 

sign inference is regarded as a low-rank matrix completion 

problem. Third, our method can be considered as general-

purpose framework, where information can be shared among 

different machine learning tasks. For example, in the case of a 

node classification problem, the user codes obtained from the 

RBM encoder could be directly used as features to the 

classifier. Finally, we experimented with Support Vector 

Machines (SVMs) as candidates for the classification task by 

feeding them with the edge codes of the known links along 

with their sign. We evaluated both linear and non-linear 

(mostly Radial Basis Function) kernels and we iterated for a 

number of rounds using a different random sample from the 

signed social graph. We found SVMs not to be robust when 

the ratio of labeled examples was small. From iteration to 

iteration, we noted large fluctuations in predictive 

performance (from 25% to 70%), which emphasizes the fact 

that SVMs have a large dependence on the choice of the initial 

random sample of labeled examples. This is where the ability 

of deep learning architectures to  perform unsupervised 

learning on the input data pays off. The experiments seem to 

confirm the manifold hypothesis [19] , according to which the 

generating distribution of real-world high-dimensional data 

tends to concentrate in the vicinity of a low-dimensional 

space. The unsupervised training step on the edge codes seems 

to detect such a low dimensional manifold while the 

subsequent supervised learning step exploits the labeled data 

to identify regions of positive and negative sentiment.  



Network architecture Fraction of known labeled links 

0.1% 0.3% 0.5% 1.0% 5.0% 10% 20% 30% 50% 70% 90% All -1 

200-750 0.7544 0.7687 0.7780 0.8016 0.8476 0.8687 0.8846 0.8947 0.9070 0.9153 0.9232 0.9493 

200-1000 0.7690 0.7707 0.7873 0.8060 0.8535 0.8801 0.8988 0.9105 0.9200 0.9284 0.9338 0.9554 

200-2000 0.7345 0.7813 0.7984 0.8156 0.8551 0.8780 0.8955 0.9082 0.9195 0.9295 0.9353 0.9592 

200-500-200 0.7405 0.7731 0.7776 0.8084 0.8491 0.8623 0.8878 0.8968 0.9115 0.9209 0.927 0.9431 

 200-1000-500-200 0.7267 0.7802 0.7844 0.8004 0.8401 0.8608 0.8809 0.8936 0.9074 0.9185 0.9280 0.9415 

200-800-800-2000 0.7134 0.7955 0.8029 0.8066 0.8443 0.8563 0.8778 0.8938 0.9053 0.9195 0.9269 0.9429 

200-50 0.7450 0.7564 0.7762 0.7916 0.8360 0.8580 0.8648 0.8683 0.8753 0.8807 0.8853 0.9070 

200-50-50 0.7389 0.7627 0.7847 0.7739 0.8272 0.8345 0.8442 0.8499 0.8624 0.8686 0.8766 0.8904 

BRI [10] (Baseline) - - - 0.731 0.747 0.776 0.818 0.836 0.869 0.894 0.912 - 

LOO-LR [9] (Baseline) - - - - - - - - - - - 0.9342 

Table 1. AUC measurements of the experiments for all the different architectures of the stacked autoencoders, and for variable fraction of the known 

signed links.  The network architecture refers to the “encoder” part of the architecture. The last rows present the results of two baseline methods

VI. CONCLUSIONS 

In this work, we investigated the interplay between user 

preferences and trust in signed social networks. We studied 

the problem in a semi-supervised setting and used a small 

fraction of signed edges to classify the remaining edges by 

leveraging contextual information (i.e. the users’ ratings). We 

used deep learning algorithms i.e. a variation of Restricted 

Boltzmann machine and Autoencoders for user encoding and 

edge classification respectively. We evaluated our method on 

a large-scale dataset from Epinions. Our findings show that 

our approach outperforms current state-of-the art methods 

[10]. In the future, we plan to find ways to incorporate existing 

social theories in our model, such as the structural balance 

theory and to examine whether our approach can be 

generalized to also handle other kinds of edge labeling, 

besides just positive and negative. 
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