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ABSTRACT

Topic discovery and evolution (TDE) has been a problem
which has gained long standing interest in the research com-
munity. The goal in topic discovery is to identify groups of
keywords from large corpora so that the information in those
corpora are summarized succinctly. The nature of text cor-
pora has changed dramatically in the past few years with the
advent of social media. Social media services allow users to
constantly share, follow and comment on posts from other
users. Hence, such services have given a new dimension to
the traditional text corpus. The new dimension being that
today’s corpora have a social contexrt embedded in them in
terms of the community of users interested in a particular
post, their profiles etc. We wish to harness this social con-
text that comes along with the textual content for TDE.
In particular, our goal is to both qualitatively and quan-
titatively analyze when social context actually helps with
TDE. Methodologically, we approach the problem of TDE
by a proposing non-negative matrix factorization (NMF)
based model that incorporates both the textual information
and social context information. We perform experiments on
large scale real world dataset of news articles, and use Twit-
ter as the platform providing information about the social
context of these news articles. We compare with and out-
perform several state-of-the-art baselines. Our conclusion is
that using the social context information is most useful when
faced with topics that are particularly difficult to detect.
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1. INTRODUCTION

Topic discovery has been a well studied area of research
since the 90s. In recent times, this area has gained renewed
interest with the advent of social media [23] B]. Social media
has completely changed the dynamics of how we operate
as a society, and has given each of us the power of being
able to constantly produce and share content with the rest
of the world. This presents several new challenges to the
field of topic discovery and evolution (TDE). Firstly, the
content is constantly evolving. Hence, any topic discovery
algorithm needs to keep with the ever changing nature of the
content. And secondly, since each one of us has the power to
produce and share content, the vocabulary used to describe
a particular event can be quite varied. In addition to this,
it has also resulted in an enormous explosion in the size
of data making it more challenging to identify which posts
are indeed the important ones. Hence algorithms need to
be robust to such irregularities in the textual content, and
should identify the most important and relevant information
from a large corpus.

Many classical TDE algorithms aim to detect the underly-
ing latent topics from the textual content of the data alone.
They are blind to the social context that comes along with
the text. For example, Twitter contains information about
the user, geographical location, time of post, etc, which
could be very useful information as it gives a context to the
textual content. We could incorporate such context infor-
mation in our learning process to learn better topics. What
we propose in this paper is to use the information about
communities present in social media in addition to textual
content to discover and track topics. We propose to use
the information about the authorship of posts, shares and
comments to detect communities of users. By definition,
members of the same community will exhibit common inter-
ests in sharing and posting information about a particular
topic. The idea here is to leverage this information (as side
information) to retrieve more accurate topics.

We hypothesize that some topics are particularly difficult
to discover using textual content alone either because the
text present in the topic uses a widely varying vocabulary
or that the text could be very volatile and could change in



a very short period of time. An example is: celebrity gossip.
For such a topic, the content varies from one celebrity to
another and hence can have a widely varying vocabulary, or
can take unexpected turns (celebrity break-ups, pregnancies,
etc.) and thus be volatile. But, for the same topic, we could
have a very dedicated community of users who constantly
share posts and comments about the topic. In this case of
celebrity gossip, it perhaps finds its niche audience largely in
the teenage demographics. Hence, leveraging the presence
of community could be useful in discovering such difficult
topics. We will call such topics which have a volatile and
constantly changing text, but a farily dedicated community
of users following the topic to be community stable topics.
There could be some other topics which have a focused tex-
tual content that does not change much over time. For these
seemingly “easier” topics (which we will call content stable
topics), perhaps using the community of interested users as
side information may not particularly improve topic discov-
eryl]. One cannot say with surity (yet). This is precisely the
kind of question we provide an answer to in this paper.

To summarize, our aim in this paper is to study in de-
tail if and when the presence of social context information
is useful in discovering and monitoring topics. There are
works in literature which have combined both content and
link information, but the natural time-based evolving and
changing aspects of both have not been considered. Other
works track content along time, but do not accommodate
for both content and link information. To the best of our
knowledge, we are the first to propose an approach that
exploits simultaneously both the content and the social con-
text in a unified framework for modeling topic evolution.
We build on the non-negative matrix factorization (NMF)
objective, with different terms modeling the content and so-
cial context aspects of our problem. Within each modality,
we model their temporal evolution to learn from the past
as well. To learn both modalities at the same time, and to
exploit their correlation, we rely on a collective factorization
approach as introduced in [25]. In our context, it consists of
sharing at each time step, a common variable representing
both the topic and the community distributions during the
learning process (for more details, see Section [3)).

We perform experiments on a publicly available large scale
dataset of news articles [20], and use the Twitter social net-
working platform as the source of social context for the news
articles. We study the effects of social activity as side infor-
mation when modeling topic evolution. In particular, our
focus will be on the following research questions.

1. Does the presence of community as side information
help in discovering those topics which have a strongly
focused textual content (i.e. content stable topics)?
One may generally not expect the presence of commu-
nity to help in this case, since the strong textual con-
tent probably suffices to discover the topics. However,
through our experiments, we indeed see improvements
in performance in some cases.

2. Does the presence of community help in discovering
those topics which do not have stable textual content,
but have stable communities of members interested in
them (i.e. community stable topics)? In this case,

n Section @ we will explain in detail how we obtain the
content stable topics, community stable topics etc.

we observe remarkable improvements in performance
when we use the community information, as opposed
to only using textual content.

3. Does the presence of community help in discovering
topics which have both a stable textual content and
a stable community (i.e. mized stable topics)? We
observe improvements in performance in this case as
well.

4. How does our algorithm compare to existing state of
the art which model topic evolution and those which
model document link structure for topic discovery? In
particular, we compare our algorithm to Link-PLSA-
LDA [2], a generative model that incorporates con-
text and content (but no tracking); Collective Matrix
Factorization [22] [8], an NMF-based model that incor-
porates context and content (but no tracking); Joint
Past Present Decomposition [26], an NMF based topic
tracking model, and Online-LDA, [16], a generative
topic tracking model. We indeed outperform the state-
of-the-art in several instances.

5. To what extent can our algorithm learn the kind of top-
ics and communities that are at hand? That is, given
an input stream of documents, how well can the algo-
rithm figure out whether the topics that have been de-
tected are content stable, community stable or mixed
stable?

The rest of the paper is organized as follows. Section
compares our work to existing work highlighting its novelties
and differences over them. Section [3] explains our model
loss function in detail, and how we optimize it. Section Ml
describes the dataset we used in our experiments. Section
provides a detailed explanation of the experiments and
results, and we finish with the conclusion in Section

2. COMPARISON TO PREVIOUS WORK

There are two families of work which we delve into to pro-
vide an overview of related papers: one is the family of work
on TDE, and the other is family of work that uses some type
of link structure (either derived from citation networks, or
other means) for topic modeling. Works which fall under
the latter family tree generally do not model the evolution
of topics that are discovered, and hence do not incorporate
a temporal aspect to the model they develop. To the best of
our knowledge, our work is the first to combine both topic
discovery and evolution with link structure. More impor-
tantly, our work is the only one which studies where the
soft spot really lies. Meaning, we comprehensively study
through experiments for what kind of topics does the social
context of an article through user interactions really produce
improvements in performance.

Topic discovery and evolution has been a subject which
has garnered plenty of attention for more than a decade
but has gained renewed interest in recent years with the
advent of the social media [23] B]. The most effective mod-
els developed by the topic tracking community is generally
built on some well-known topic discovery model (or topic
model) with a temporal aspect added to it to accommodate
for the incoming stream of data. This is the case with NMF
(non-negative matrix factorization) [I3] based models that
connects along time the learned representations for the in-
coming stream of data [5l [14] 2], 26]. In the same spirit,



other works extend generative models like latent dirichlet
allocation (LDA) [6] for analyzing the evolution of topics
along time [2] 28] [T 27].

Social information for topic detection has masqueraded
with many names in literature. There have been entire lines
of works which use the link structure between documents
to model topics. This link structure can be built to model
a certain relationship between documents. Examples of in-
formation that can be modeled through link structure are
common authors between documents, citation networks, etc.
Many of these models derive inspiration from classical topic
modeling algorithms, and extend them to incorporate for the
new modality of information now available to them. [10] pro-
posed the Link-LDA model which extends LDA to include
citation information. It replicates the graphical model used
for modeling documents and words to also model documents
and citations. It enforces that the document’s topic distri-
bution and the document’s citation distribution to be the
same. [I6] propose Link-PLSA-LDA as a scable LDA-type
model for topic modeling and link prediction. Relational
Topic Model (RTM) was proposed by [7] to model link be-
tween documents as a binary random variable based on the
content of the document. They do not consider the com-
munity information. [19] propose the author-topic model to
simultaneously model the content of the topic and the inter-
est of the author using a shared hyperparameter. [I5] pro-
pose the topic-author-recipient model to take into account
the directionality of the link between the documents, and
models the “who-cited-whom” information. More recently,
we have works of [9] which represents documents through
‘badges’, which are essentially descriptive terms from the
users sharing the documents. However, in our method, we
model the full authorship information as a matrix and per-
form collective matrix factorization. We note that none of
these methods that use the link structure or authorship in-
formation consider temporal aspect for monitoring topics.

3. LEARNING FROM CONTENT AND
SOCIAL MEDIA ACTIVITY

In this section, we explain how we formulate and optimize
the problem of topic discovery and evolution using content
and social context information. Henceforth, we refer to our
method as LTECS, an acronym for Learning Topic Evolu-
tion from Content and Social media activity. We begin with
some notation. We assume a constant flow of documents.
Let X! be a N} x N matrix at time ¢ of N} documents
and Ny textual features. The complete data matrix X ob-
tained by concatenating vertically the matrices X" along the
time steps is considered huge and and practically difficult to
store and handle. The simplest approach to topic detection
consists of directly learning from the global matrix X. How-
ever, in the real world, we are observing evolving topics and
trends [I5]. Hence, using much older data to estimate cur-
rent trends may lead to wrong inference. Another typical
strategy, consists of directly learning topics from the cur-
rent batch of data while ignoring the trend history. One is
therefore faced with the tradeoff between past and present
observations. While recent approaches modeling topic evo-
lution do address this tradeoff [26] 2], they rely only on the
content of the documents as their primary mode of input.
In order to consider other modalities as well (e.g. the social
context associated to user activities), we introduce in the
remainder of the section a multimodal approach to model

topic evolution. For the social context input, we have as-
sociated to each document in X', a set of users who are
interested in these documents. Let U? be a Nﬁ X N, matrix
at time t of Né documents and N, users. Here, N, is the to-
tal number of users in the social network. In particular, we
have Ufj = 1 if document-i has been mentioned by user-j,
and it is 0 otherwise.
3.1 The Objective Function

Our aim is to discover topics using both X* and U*. We
will start with the traditional objective function for NMF
and build on it. The goal of non-negative matrix factoriza-
tion is to decompose documents in terms of the underlying
latent topics. Let us fix the number of topics to be k. We
would like to decompose X' so that:

X'~ W'H". (1)

Here, the H' is a k x Ny topic matrix. Each row in H*
represents an underlying latent topic. If the encoding fea-
tures of X' are the words themselves, then each entry in
H' represents how frequently a particular word appears in
a topic. The W' matrix represents how each document is
decomposed in terms of the topics found in H'. It explains
each document in terms of the topics discovered in the H’
matrix.

For each document, in addition to the textual features, we
have information about which users are interested in these
documents. Just as in Equation [[ where we decomposed
each document in terms of the latent topics, we can think of
decomposing the documents in terms of the latent commu-
nities found in the social network. That is, we have:

U'=~ W'G". (2)

The key assumption in our formulation is that we have a
common decomposition matrix W? for both equations[and
Our assumption is that a particular community of users
will be dedicated to a particular topic. Hence, we should
be able to decompose a document in terms of its topic or
in terms of its communities in the same way. An article
about Kim Kardashian can be thought of being decomposed
as 90% showbiz and 10% spread across the other topics.
Our postulation is that, there is a community of users who
show keen interest in showbiz news, perhaps a community
in teenage demographics. Hence, the same document can be
equivalently decomposed in terms of the community as 90%
community interested in showbiz and 10% spread across the
other communities. Equations[Iand Bl form the backbone of
the two different parts (namely the topic and the community
part) to our objective function. The way through which we
connect the two modalities is via the W' matrix, making
it common to both decompositions. This method is tradi-
tionally referred as collective factorization [25], and consists
of sharing one common variable across different modalities.
The same principles have also been applied in deep learning
(by sharing a common hidden layer across different modal-
ities) [18], and in probabilistic modeling (by conditioning
different observed modalities on a common hidden random
variable) [4].

Since we also wish to model topics’ evolution over time, we
make use of the topics that were discovered in the previous
time steps to help in better identifying topics in the current
influx of documents. We decompose the current influx of
documents using the topics discovered in the previous time



step as follows:
X'~ W'MyH ! (3)
Here, H'™! is a matrix of topics discovered in the previ-
ous time step. The product M5H'™' can be thought of
explaining the current topics H' as a linear combination of
the previous topics. Mk is the topic evolution matrix. An
MY matrix close to identity (or a permuation of it) tells us
that the topics have not changed much from the previous
to current time step. We delve into analyzing this matrix,
and hence the stabiltiy of topics (and communities) in future
sections.
We also add a component of monitoring communities over
time. Similar to Equation[3l we model the current set of doc-
uments with respect to the previous communities as follows:

X'~ WMLGH !, (4)

where MY is the community evolution matrix.

The crux of our loss function is formed by putting to-
gether Equations [0 through @l Our variables are W, H?,
G', M4 and MY. The optimization is performed one time
step after another. Hence, H ™! and G*~! are known to us
by time t. We decompose our loss function into the following
components,

L=upuLr+(1—p)Le + R, (5)

where Lp and Lc are the topic and community parts of
the objective function and R encompasses the regularization
terms. We impose I; regularization on W, H*, G* and both
the evolution matrices M% and ML to promote sparsity. In
order to drive the loss function more towards either topic
modality or the community modality of the objective, we
use a parameter p € [O, 1]. u = 0 places full weight on the
community part and g = 1 places full weight on the topic
part.

The topic part and the community part of the objective,
and the regularization terms can be written as:

Ly = [|X' - W'H'||} + || X' = W'MZH V|7, (6)

Lo =|[U' - W'G'|[} +[|U" - W'MG'™ |7, (7)

R =a(|W* | + |[H'| + [|G | + |MZ||x
+(IMEll) + A(IM7 = |7 + [[Me = I|%). (8)

We add a term A||M’ —I||3 which, depending on the value
of A € {0,00} controls how much importance is placed on
the past and the present. A large value of \ places much
weight on the past and vice versa. The role of parameters A
and p are analyzed in detail in Section [l

3.2 The Optimization

‘We minimize the loss function L as shown below:

{VVi7 H., G, MtT’*, Mtc*} = argmin .
Wt Ht Gt M4, ML
(9)
Note the variables with respect to which we optimize L.
Of these variables, the one that is most useful for evaluation
purposes is the matrix H. This is a matrix of word distribu-
tions for each topic. We compare the top-10 words from each
topic in H* to the top-10 obtained from the groundtruth.
More details about groundtruth and evaluation are provided
in Section
The optmization problem in Equation [l is not convex in
all the parameters simultaneously. We use multiplicative

updates as in [I2]. For the loss function in Equation [@ we
derive the gradients with respect to each variable as:

vwt L =W HH" +G'G"
ML TH T H MG + MG G ML)
~xH" +xtE My utat”
+ UthflTMtcT — aeeT),
Vel = WWH — (WX — aee”),  (11)
Vol = WWIG — (WU — aee”),  (12)

t—1T

Ve L =HH )M (WTW) + a5 1)
— (H'X W' + AI - aee”),

Ve, L =(G'G)MET (WTW!) 4+ aME"
— (G'U""W' 4 AT - aee”), (14)

where e = [1,1,...,1]. From the Karush Kuhn Tucker first
order conditions, we have the primal feasibility as:
W'>0,H >0,G'>0,M; >0and My >0, (15)

the stationarity condition as L(W* H G*, M4, M%) = 0,
at the minimizers, W, H'", G'" ML "ML ", and the com-
plementary slackness:

VatLOG =0, v LOH' =0,
VM, LOMe =0, vy LOME =0, (16)
TwtLOW'  =0.

The update equations are derived by substituting the gradi-
ents (Equations [I01- [[4) in the first order conditions (Equa-
tion [IG) as below:

W'« W' o %, where

N=xHa"+xH M +UGT UG ML

—2aee”),
D=W/HH" +G'Gc" + M H H ML
+MLTG T G IME),
(17)
WX — qee”
W W'H
Tyqt T
‘ ¢ (W' U" - aee’)
G +— G QW’ (19)
t—1~rtTyxrt _
M Mbo (H ' XTW 4 AL - a)

(' TH MG (WHTW) vy
(20)
(GUTTW!E M — )
(Gt—th—lT)MtcT(WtTWt) + )\MtCT :
(21)

ML+ MLO

Theorem 1 The loss function L in Equation (@) is non
increasing under the update rules in Equations [I7), (I3),
(19), (20), and (Z1)). The loss function L is invariant under
these updates if and only if H', G', My and M% are at a
stationary point of the function. The proof for update rules



on H' and G* comes directly from [I3]. For the update rules
MY and MY a related formal proof is given in [26]. Finally,
the proof for update rules on W* follows from [13]. Due to
the lack of space, its proof will be provided in an extended
version of the paper.

4. DATA SET DESCRIPTION

Data: z € Nug; X X0+ - x0+2), g gt
oL, gt @ plty) o pE) s We assume
that we track a set of defined hashtags so that
N}(Lt) = N}(LH'D =...= N}(LH'Z), and in particular
that all the rows of T matrices are equal.

Result: Two vectors v,,v, of size N,(f) containing for

each hashtag a stability score over the content
matrix X and user interaction matrix U.
forall the i€ 1,2,..., N, do

Sz = 0

Sy = 0;

forall the act,t+1,...;,t+2—1do

se += cos((TWX @)l (Tt X (@),
5u += cos((T@WU@)el (T UletD)el).
end

veli] = =

vuli] = 2
end

Algorithm 1: Hashtag stability scores

In order to accurately answer the research questions posed
in Section [Il and evaluate our algorithm we need a dataset
where the topics persist over a period of time, and also has
a social community that accompanies it. We use the public
dataset which was released in 2013 [20] consisting of all the
articles published from 80 international news sources such
as CNN, BBC, Aljazeera during a period of 14 days. Each
news article consists of the textual content of the article
(via html) and a list of all tweets which link to that article
over a period 12 hours from the article’s publication. The
tweets containing links to the news articles were also col-
lected. From the tweets, two features were extracted: the
author of the tweet and the hashtags present in the tweet.
The information about the author of the tweet was used
to detect the community information. The hashtags in the
tweets were used as the groundtruth topic of the document
which the tweet linked to [T Most of the articles were
associated to a hashtag. We discarded the ones which did
not correspond to any hashtag. Since we wish to track top-
ics over a period of time, we consider only those hashtags
that appear every day (and thereby pruning the number
of articles even further). Moreover, to avoid data sparsity
of articles, we keep only those hashtags that have at least
five articles per day. After all the filtering, we end up with
33,387 articles (from an original set of 53, 784) associated to
384 different hashtags. For details about data acquisition,

refer to [20].

4.1 Stability of Tags

Recall that we use the hashtags as the groundtruth topic
of the text document. Keeping in mind our research ques-
tions from Section[Il we wanted to detect the three different

2We hereby use the words topic and hashtag somewhat in-
terchangeably.
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Figure 1: This figure illustrates the stability of hashtags in terms
of content and community information. Each dot in the figure is
a hashtag. The x-axis and y-axis represent content and commu-
nity stability. The content and community stability scores are
calculated according to Algorithm [I1

categories of hashtags for each dataset. The first category of
hashtags are those that are stable in terms of content, but
relatively unstable in terms of community; meaning that
the content corresponding to these hashtags does not evolve
much over the period of interest, but the community of users
who tweet about these hashtags evolves quite a bit. We call
this set content stable hashtags. These are the supposedly
‘easier’ topics where one may expect that the presence of
community may not particularly help in better topic dis-
covery. The second category of hashtags are those that are
stable in terms of their community, but the content evolves
a lot; meaning that the community of users that show an
interest on these tags stays relatively unchanged over a pe-
riod of time, but the actual content (in terms of vocabulary)
changes a lot. We call this set community-stable hashtags.
These are the supposedly more difficult topics where using
the content alone may yield only poor performance, since
by definition the content is not very stable. The third cate-
gory of hashtags are those that are stable in terms of both
content and community, called mixed-stable hashtags. In-
tuitively, we posit that our model would work particularly
well in discovering and monitoring those topics which have
a stable community of active users over the period of inter-
est, but have a content which is evolving a lot (these are
community-stable hashtags).

Following the notation specified in Section [3] we explain
how we determine the tags which fall into the content-stable,
community-stable, and mixed-stable categories. Let us con-
sider matrix T® of size N}(Lt) X Nu(lt), where N,(lt) is the num-
ber of hashtags produced at time ¢ and tht) is the number of
documents arriving at time ¢. In particular, T (4,j) =1if
the document j has been mentioned in a tweet that contains
the hashtag i, and 0 otherwise. Algorithm [I] explains how
we compute a stability score for each hashtag in terms of
their content and community. The essence of Algorithm [I]
is as follows: by simply averaging all the documents belong-
ing to a particular hashtag, we obtain a representation for
each hashtag in terms of features extracted from the docu-



ments. Following this procedure, each hashtag can consists
of a (centroid) vector of Ny entries (i.e., in a bag-of-words
representation). We compare this representation with a sim-
ilar representation obtained for the same hashtag at the next
time step using cosine similarity. We then average all the
similarities obtained across the consecutive time steps for
each hashtag.

Refer to Figure [l Note that, in such a figure, the point
(1,0) represents perfect content stability, and zero commu-
nity stability. To determine the set of hashtags that belong
to the content stable set, we calculate the Fuclidean distance
between (1,0) and all the other hashtags, and rank them in
the increasing order of their distances. Likewise for com-
munity stable and mized stable sets (using respectively the
Euclidean distances to points (0,1) and (1,1)). Some ex-
amples of content stable hashtags are #football and #h7n9;
community stable hashtags, #celeb and #gossip and mixed
stable hashtags #alarabiya and #forbes.

S. EXPERIMENTS

Recall that our goal in this work is to gain a better under-
standing of when the social context surrounding the doc-
uments actually improve topic discovery. Hence, in this
section, our primary focus is to provide a quantitative and
qualitative answers to each of the research questions posed
in the introduction. Section [5.]] provides an overview about
the baseline algorithms, details how we implement them,
and how we use them in our problem setting. Section
provides details about how the groundtruth topics are ob-
tained. In addition, it also explains how the topics detected
by our algorithm and each of the baselines are compared
with the groundtruth topics, and what metrics are used for
the evaluations. Then, each of the subsequent subsections
are dedicated to answering one or more research questions.

5.1 Baselines

We evaluate our algorithm with several baselines. Our
baselines can be divided into two categories; one which fo-
cuses on modeling topic evolution, and another which aims
to incorporate link information into topic modeling.

Link-PLSA-LDA [16] is an algorithm which uses both the
content and link information (but does not have a tempo-
ral aspect incorporated in it). The link structure is built
from the citation network of the documents. The algorithm
combines LDA and PLSA into a single framework and in
addition, models the topical relationship between the cit-
ing document and the cited documentf] The inference is
carried out by employing mean-variation approximation of
the latent variables. To implement this algorithm, we used
the code developed by the authors which is available pub-
1iclyH As input, the algorithm requires a list of documents
in a bag-of-words format, and a matrix of links between the
documents. Producing bag-of-words for each document is
straightforward. For the link information, we assume that a
link exists between two articles if they have a common user
sharing or posting the article. This information was essen-
tially derived from the U matrix in Section @ Each fresh
inflow of documents is considered as a separate problem as
the model was not developed to connect topics temporally.

3While we do not explicitly compare to [10], the authors
of Link-PLSA-LDA compare their own work to former and
claim better performance.

“https:/ /sites.google.com/site/rameshnallapati/software

Collective Matriz Factorization (CMF) [22] [§] Broadly
speaking, the concept of collective matrix factorization has
been used in several applications including recommenda-
tion systems, producing hashing functions for images, co-
clustering etc. In this scenario, we will use CMF to incor-
porate both the social and textual aspect of the objective
in Equation Bl but not its temporal aspect. We compare our
method to this baseline to show that using the temporal
information of tracking the textual content and community
helps improve performance.

Online-LDA [2] is an algorithm which monitors topic evo-
lution, in that it utilizes the information about topics de-
tected in the previous time steps, but does not accommo-
date for the link structure between the documents. We im-
plemented Online-LDA based on the original LDA code de-
veloped by David Ble{] (as suggested by the authors of [2]).
The authors of [2] had found that using the topics detected
in the previous time step produced the most improvement in
performance, and suggested that using the topics from ear-
lier time steps produced only marginal improvements. We
tested this baseline in a similar setting as well and used only
the topics in the previous timestep to discover current topics.
In essense, implementing Online-LDA boils down to setting
the prior on the topics according to the topic distribution
discovered in the previous time step.

Joint Past Present Decomposition (JPP) [26] models also
the topic evolution, but as Online-LDA, is blind to the so-
cial context surrounding the input documents. Our method,
LTECS, reduces to JPP when = 1. We used the code pro-
vided by the authorsﬂ

5.2 Evaluation, Groundtruth and Experi-
mental Setup

We evaluate all the algorithms by comparing a ranking of
the top-10 words obtained by each algorithm, and a rank-
ing of the top-10 words obtained by the groundtruth. It
has been shown that the group of top-10 words indeed give
us a good insight about the topic [24) [17]. All the algo-
rithms considered here including the baselines and LTECS
discover topics by directly producing a distribution over
words. In terms of mapping the discovered topics to the
groundtruth topics, we calculated the cosine similarity be-
tween each of the discovered topics and the groundtruth
topics. Each discovered topic was then mapped to the most
similar groundtruth topic. We borrow this procedure pro-
cedure from other state of the art experiments in topic evo-
lution [2I]. The distributions produced in each case are dis-
crete and can be used to pick the top-10 words in each topic
and to produce a ranking.

We now delve a bit more into how the groundtruth is
obtained. On Twitter, hashtags are a sequence of non-
whitespace characters which follow the # sign. It is pop-
ular convention on Twitter to embed a hashtag in a tweet
to give it context. And as in several studies in the past,
this context is used as the groundtruth topic annotations
for the news articles whose links are embedded in the tweet
[I]. The hashtags for each of the three categories, content
stable, community stable, and mixed stable were identified
as explained in Section [l

The way we calculate the actual groundtruth topic distri-
bution is that, at each time step, the T matrix (refer to

®http://www.cs.princeton.edu/ blei/lda-c/
Shttps://github.com/amantrac/TopicDiscovery JPP
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Figure 2: This figure illustrates the effect of the importance parameter, p on the performance. Refer to Equation[El A high value of
places more weight on the topic part of the objective and less weight on the community part of the objective, and vice versa.

Section [ for notation) is premultiplied by X® to obtain a
resulting matrix of raw word counts for each topic. Premul-
tiplication of T® by X® basically yields the average word
distribution within each hashtag. Once this is obtained, the
highest weighted 10 words form our groundtruth ranking.
We use Normalized Cumulative Discounted Gain (NDCG)
metric, and the Mean Average Precision (MAP) metric to
compare the rankings obtained by each algorithm to the
groundtruth. We have performed experiments by consider-
ing the best 5,10, 15 and 20 topics for each category.

We now give details about the experimental setup. Our
objective function is optimized iteratively using the multi-
plicative update equations (Equations [T - 1)) in Section
The variables W H', G*, M4, M4 were given a ran-
dom non-negative initialization. The parameters were tuned
on all the data. In both datasets, the data spans for 14
days, and hence the topic discovery results that we obtained
are averages of the results obtained over that time period.
The 1 normalization parameter for CMF, the JPP model
and the LTECS model were set to 0.05. The A param-
eter was tuned for values of {10,100,10%...107}. Tt was
consistently observed that the algorithm yielded good per-
formance for A = 107 E| We tuned for different values of
w € {0.01,0.25,0.5,0.75,1} and picked the one which gives
the best performance. We delve more into the analysis for
in subsequent sections. For the baselines, all the parameters
were tuned and set internally.

5.3 Social Information Vs Textual Content:
the Trade-off

"While it so happens that this value of lambda worked well
for the Twitter dataset, it may not hold for other datasets.
As amatter of fact, we explore this more in Section G5l where
we try to assess the quality of topics by setting o = 0.5 and
A=0.

The p parameter from Equation [l allows to bias the ob-
jective function more towards one of the modalities, if so
desired. A high value of p biases importance to the con-
tent part of the objective and vice versa. In fact, LTECS
reduces to JPP when p = 1 and hence JPP can never out-
perform LTECS. This section delves into investigating how
the trade-off between using content and social information
actually functions on both datasets.

For the case of community stable hashtags, the best per-
formances were achieved for 0.01 <y < 0.5 (Table[Dl). This
implies that when a lot of importance was placed on the so-
cial context part of the objective, better were the topics that
were detected. Refer to Figure Bb and k. These figures il-
lustrate how the performance varies as the value of ;1 moves
from 0 to 1. Note that highest performance is achieved when
n<0.5.

While considering content stable hashtags, we will focus on
LTECS and JPP in Table[[l For k = 5 and 10, we observe
best performances by both JPP and LTECS method. In
other words, LTECS algorithm exhibited best performance
when the objective contained only the content part with
p = 1. This suggests that for topics which have a highly fo-
cused text, we need to place all the importance on content.
What is more interesting is that, it implies that even if we
add a little bit of the social context information to the ob-
jective, it actually hurts performance. Let us contrast this
result to what happens when £ = 15 and 20. In those sce-
narios, we observe that the best performance was obtained
by LTECS, when p was 0.75. For the purest 5 and 10 top-
ics, it could be that the content of those documents were
very well defined that the usage of side information actually
detracted the objective from the correct path. However as
the number of topics increases (k = 15, 20), there is perhaps
more noise in the topics and we find that the use of com-
munity information indeed helps. This suggests that for the



best performance one needs to know the accurate operat-
ing spot of the u parameter. The important message from
analyzing the p trade-off for content stable and community
stable hashtags is that, with very focused text, just using
the content suffices. This is likely to be the case for the
dominant topics (i.e. k < 10 in our study). On the other
hand, if the text is a little noisy, the social context greatly
helps in discovering better topics. This is likely to be the
case when tracking more than just the top dominant topics
(k > 10 in our case). As we argue in the introduction, in
today’s world, the text is more often than not quite noisy as
topics are prone to being volatile and evolving very quickly.
Refer to Figures 2(a) and (d). The figure illustrates that
the best performance is acheived when p > 0.5.

By definition mized stable hashtags have both stable con-
tent and stable communities. As it turns out, the best per-
formance for LTECS is obtained when 0.25 < p < 0.75. This
suggests that when we have topics which have both stable
content and community, it is necessary to give importance
to both aspects. In addition, biasing only on content does
not yield the best performance. In Figures[2(c) and (f), the
best performance is achieved in the midregion of the plot.

5.4 Comparison with the state-of-the-art

In this section, we discuss how our algorithm performs
in comparison to state of the art baselines introduced in
Section 5.1l One of the main conclusions from analyzing the
results is that, using the community information certainly
helps with better topic tracking. This is a direct observation
from Table [[] that the NDCG and MAP values for LTECS
is higher, or at least as good as its competitors in most
scenarios. The rest of this section will highlight where the
sweet, spot of the trade off between content and community
lies, and why.

For community stable topics, as expected, good improve-
ments were seen in the community stable hashtags. In these
hashtags, LTECS algorithm consistently outperforms all the
baselines. It is clear that the use of community information
helps in better topic discovery. It is also interesting to note
that the algorithm that exhibits second best performance is
Link-PLSA-LDA. Hence, not learning from older topics does
not particularly hurt Link-PLSA-LDA in its performance
when compared to Online-LDA and JPP. This means that,
for community stable topics, the algorithms that use some
form of social context information or link information per-
form better than those that discover topics using content
alone.

In the case of content stable topics, one may expect the
baselines which focus only on the content of the documents
to exhibit best performance. This is partially true. For
k = 5,10, JPP and LTECS outperform Link-PLSA-LDA
and Online-LDA. Note that in both cases LTECS achieves
the best performance only when p = 1 implying that adding
community information does not help. On the other hand,
for £ = 15 and 20, LTECS achieves best performance over
all the baselines. In these cases note that the value for pu =
0.75. This implies that adding the community information
actually helps. We already discussed this behavior in Section
Another thing to note here is that Link-PLSA-LDA
some what consistently ranks last. This is because Link-
PLSA-LDA, unlike LTECS lacks the tuning parameter p
which can seamlessly shift the focus of the objective between
topic and community. It perhaps places equal weight on
both, and hence fails to make the appropriate tradeoff.

For mixed stable hashtags, the performance is in generally
very good for all the hashtags. This becomes clear when we
compare the performance metrics of content stable and com-
munity stable to mixed stable. There is a noticeable jump
in the average NDCG and MAP scores. This implies that,
if a hashtag has both well focused content, and a dedicated
community of users, detecting those topics are much easier.

5.5 Learning Stability of Topics

In this section, we investigate to what extent can our al-
gorithm learn the type of topics present in the documents;
i.e., are the documents more content stable, community
stable or mixed stable. And we certainly do not want to
be able to bias the objective function more towards one
of the modalities. Hence, for all experiments in this sec-
tion, we set u = 0.5. Recall that our loss function (Equa-
tion [) is built such that H* =~ MH!™!. The proposed
model encourages for stability of topics and communities by
regularizing the evolution matrices M% and ML through
A|[ME = TI||% + [IME — I]|%). A high value of A pushes
the evolution matrices close to I which enforces the topics
(and communities) to evolve very little over time. So far, we
demonstrated the effectiveness of using side social informa-
tion in order to discover topics on large scale dataset based
on Twitter. In this section, we aim to assess the extent to
which our algorithm is able to recover correctly the evolu-
tion patterns exhibited by the data by studying the evolution
matrices M% and M& across consecutive time steps.

This raises the question of how to set A. In presence of a
groundtruth this parameter can be tuned by cross validation
as we did in the previous section (where hashtags where
used as proxy to build the groundtruth). However, in the
real world, topical annotations are rarely available. In this
context, the user can decide to use the model in an “agnostic
mode” by not placing any form of prior on the evolution
matrices. This is achieved by setting A to 0. In this real
world scenario, we may wonder if the model, without the
help of any prior, will be able to recover the correct evolution
patterns. In other words, we propose to test the extent
to which the retrieved evolution matrices are close to the
“real ones”. To do so, we make use of the group of hashtags
previously identified (Section[]) as stable and unstable at the
topic and community level. To validate that the retrieved
M matrices exhibit a temporal stability pattern which is
indeed present in the data, we test if the matrix retrieved
from the stable group of hashtags is closer to the identity
than the one retrieved from the unstable group (for both
topics and communities). In other words, for topic stable
hashtags, we want M¥ to exhibit more stability than M
and for community stable hashtags, we want M to exhibit
more stability than M.

For the purpose of the experiments, we need to measure
how close an evolution matrix M is to the identity I. Or,
in other words how stable is the evolution exhibited by M.
Now, we will quantify this closeness. An important point to
remember now is that, many distance or similarity measures
will fail to capture the notion that we are after. For exam-
ple, quantifying the stability of M by simply calculating a
cosine similarity between M and I will not work because M
is prone to topical (and community) permutations over time.
Since we are working in an unsupervised setting, what was
‘topic-1" at time-t could have been discovered as ‘topic-5’
at time-(¢ 4+ 1). Hence, we must make sure that the result-



Category of Topic | Metric Model k=5 k=10 k=15 k=20
LTECS 0.4081 0.4800 0.5029 0.5129

Community n=0.01 pn=0.>5 pn=0.5 pn=0.5
NDCG JPP 0.3699 0.4496 0.4608 0.4138

Online-LDA 0.3903 0.4138 0.4446 0.5667

Stable Link-PLSA-LDA 0.3943 0.4608 0.4761 0.4925
CMF 0.3454 0.4338 0.4771 0.4827

LTECS 0.2653 0.3637 0.4007 0.4173

pn=001 pn=0.5 n=0.5 n=0.5

Hashtags MAP JPP 0.2191 0.3596 0.3462 0.3420
Online-LDA 0.2628 0.3160 0.3489 0.3835

Link-PLSA-LDA 0.2704 0.3364 0.3658 0.3937

CMF 0.2044 0.3190 0.3757 0.3665

LTECS 0.6888 0.6055 0.6317 0.6623

Content nw=1 nw=1 pn=0.75 pu=0.75
NDCG JPP 0.6888 0.6055 0.4885 0.6504

Online-LDA 0.6815 0.5988 0.6166 0.6684

Stable Link-PLSA-LDA 0.6574 0.5862 0.6087 0.6401
CMF 0.5846 0.4919 0.4455 0.4327

LTECS 0.5655 0.4784 0.5115 0.5559

pw=1 p=1 pn=0.75 pn=0.75

Hashtags MAP JPP 0.5655 0.4784 0.3089 0.541T
Online-LDA 0.5175 0.4083 0.4555 0.5443

Link-PLSA-LDA 0.4890 0.3817 0.4434 0.5053

CMF 0.4423 0.3207 0.2556 0.2557

LTECS 0.9005 0.8868 0.9249 0.9089

Mixed pnu=025 p=07 =025 p=025
NDCG JPP 0.8771 0.8762 0.4251 0.4580

Online-LDA 0.9564 0.9168 0.9111 0.5967

Stable Link-PLSA-LDA 0.8944 0.9159 0.8392 0.8975
CMF 0.6712 0.8768 0.8905 0.8753

LTECS 0.7783 0.7965 0.8964 0.8845

p=025 p=07 =05 =025

Hashtags MAP JPP 0.7762 0. 7783 0.3232 0.3644
Online-LDA 0.9208 0.8804 0.8841 0.4308

Link-PLSA-LDA 0.8787 0.8379 0.7452 0.8982

CMF 0.5329 0.8223 0.8499 0.8337

Table 1: Topic discovery evaluation using Normalized Cumulative Discounted Gain and Mean Average Precision metrics for all three
categories of hashtags. k stands for the number of topics. A was set to 107, and « was set to 0.05 for LTECS model. All the values in
bold represent significant improvement in performance (using Student-t test, p < 0.05).

ing definition of stability is invariant to such topical (and
community) permutations.

To quantify stability, first note that, through the primal
feasibility conditions (Equation [[F), we have M4 > 0, and
ML > 0. Therefore, when we apply I1 normalization to
the row or column of the M matrices, we obtain stochas-
tic matrices. Also, recall that the largest eigenvalue of a
stochastic matrix is 1. We now define the stability score for
the evolution matrix M as follows:

DEFINITION 1. Let M be a stochastic matriz obtained af-
ter I1 normalization of the evolution matriz M. The stabil-
ity of M is defined as:

stability(M) := w, (22)
where {~v;}s are the eigenvalues of M, and n is the number
of rows (and of columns) of M.

We make some observations about this definition. The
stability(M) takes value between [0, 1], since none of the
individual abs(;)s can exceed 1. The matrix representing
perfect stability would be I or a permutation of I (due to
possible topical shifts between two consecutive time steps).
A matrix M has stability(M) =1 <= M =1 or a permu-
tation of I.

Through Definition [l we investigate if the model can re-
cover the temporal topic and community stability patterns.
We evaluate this for each category of hashtags by calculating
the stability (M) for the M4 and M§ calculated in each time
step, and producing an average value. stability(M) is cal-

culated through two ways: by calculating the left and right
eigen values of the M matrices. We confirm that the model
can recover a more stable temporal matrix for topics than
for communities when processing hashtags with topical sta-
bility (Figure Bl left). While when processing hashtags that
are community stable, the model recovers a more stable tem-
poral community matrix (Figure B] right). We are thereby
able to see that using such stability analysis of the evolution
matrices, one can study the nature of the text corpora when
there is no prior knowledge. This will actually help the user
determine a value for pu.

6. CONCLUSION

The goal of our work was to gain a better understanding
of when social context helps in modeling topic evolution.
In order to achieve this, we proposed a matrix factorization
based approach which takes into account both the content
of the documents and their social context. We found that,
depending on the kind of topic, there is a clear trade off
between the content and community. The content of the
document suffices if the text of the topic is very focused,
and evolves little over time. As we begin to move away
from this scenario to consider documents that have a richer
and more variable vocabulary, we find that the use of social
context begins to help greatly. We were also able to show
that our model can learn the kind of topics at hand; i.e.,
whether they are content stable, community stable, or both.

This work predominantly considered the user interactions
of the documents as the social context. In the same spirit,
one could explore what it means to consider other types
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Figure 3: This figure plots the stability of M% and M£f.. We note that in (a) Mf matrix shows higher stability than the ML, matrix,
and in (b) Mtc shows higher stability than M., thus confirming that we are indeed able to learn the stability through our algorithm.

of contexts like geographical location of the user (or docu-
ment), and also perhaps delve more into the user profiles
and incorporate information about age, gender and demo-
graphics to give a well rounded view of the social context.

We

7.

hope to be able to work on these aspects in the future.
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